STAT 437 - Lectures 019 and 020 Notes Mixed Effects Models (Theory)

Linear Mixed Effects Models

The primary shortcoming with linear marginal models is that they can only answer questions
aggregated by group. It seems likely than (for instance) in a medical study, each individual
patient is going to have a unique way of responding to treatment. Some of this response is
going to be driven by factors that we care about (age, sex, disease progression and so on),
but for reasons unbeknownst to us, some individuals will respond differently. In a marginal
model, we do not model this directly, and instead allow this structure to simply be captured
by the overall variation and correlation structures we imposed. If we want to be able to
make predictions at the individual level, however, this technique will not do.

One method for accommodating individual level structure is through the use of mixed
effects models. The idea with a mixed effects model is to breakdown the effects that we
care about into components which are population averages, and those which are individual
specific. To motivate this, suppose that we are explaining an outcome of interest just through
a simple, linear model with time: Y;; = By + B1t;;. This has us specifying that the overall
mean across the population is given by this equation, but we know that each individual is
likely to differ slightly. Suppose that we want to allow for each individual to have started
at a different baseline value: that is, each individual should have a different intercept. We
could update this model for the means to be Y;; = By + bo; + Bit;;. In this sense, at t;; = 0
we now expect the outcome to be fy + by;, which can differ individual to individual. If we
wanted to allow the slope to change by individual as well, we could expand this idea to be
Yij = Bo + boi + (B1 + bi)ti;.

In this model we can think of the effects at the population level as 5, 4+ Sit;; and the
individual level effects as by; 4 by;t;;. If we can find a way to estimate such a model then this
breakdown overcomes the shortcoming of the marginal models! Note that, as posed, these
models might become a problem to estimate if we are trying to use too many parameters.
At the extreme, we could think of fitting a different regression model for each individual in
the sample. The problem with this is that the models will typically be underspecified (as-
in, we will not have sufficient data to estimate the parameters uniquely) and at that level
we have ignored within-subject correlation (a unique model for each individual will assume
independence within the individual). In order to overcome these problems, we think of the
population level effects as parameters, just as we have been, but we think of the individual
level effects as random factors. That is, we assume that the b; are drawn from some specific
distribution. That way, instead of estimating the parameters themselves, we estimate the
parameters of the distribution, and these models become identifiable.

Mathematical Specification of the Model

A linear mixed effects model is a parametric method (meaning that a complete distribution
is specified), and can be thought of as being constructed in three parts:

1. The population level average.
2. The individual level effects.

3. The random wvariability in an observation.
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Denoted mathematically, we write that

Yij = Xi; 8+ Zi;bi + €.

Just as before, Y;; is our outcome (which we are taking to be continuous, since this is
a linear mixed effects model), X;; is the set of variates for individual ¢ at time j, and £ is
a vector of regression parameters, defining our population mean. In this model, since these
effects are fixed at the population level, we call 8 the vector of fized effects. We take Z;; to
also be a set of variates for individual ¢ at time j. We think of Z;; as the variates that we
expect to have an individual level effect on the outcome. Typically, we will have Z;; C X;.
The individual effects are controlled by b; which we assume follows a N (0, D) distribution.
If Z;; € X, then the assumption of zero mean is not restrictive, as a non-zero mean will
be captured in X;3. The covariance matrix D will typically be left unconstrained, and our
goal is to estimate it from the data. Because we take b; to be a vector of realizations from a
distribution, we call them random effects. Combining random effects and fixed effects gives
us the terminology of mized effects models.

The ¢;; are taken, as-in a standard regression model, to be a vector of random variation
from the conditional mean. We will take ¢, = (€1, ,€x,4) ~ N(0,G;). We will also
assume that G; = 0?I. These assumptions taken together mean that the components of €;
are independent of one another, as we would typically assume in a regression model. This
allows for us to take ¢; to represent the random sampling variability (and measurement error)
that is intrinsic to any measuring process. We also assume that b; L ¢; for all individuals.
We will typically write down this model at the individual level, in vector notation, as

Yi=XiB+ Zib; + €.

With this specification of fixed effects, random effects, and the random errors, we have
actually specified the complete distribution for the model. As a result, we will be able to use
maximum likelihood estimation to estimate all of the parameters of interest. In particular,
note that since b; is assumed to be normal, then so too will Z;b;. Moreover, since b; and ¢; are
independent and normally distributed, the sum Z;b;+¢; will also follow a normal distribution.
Then, since X;f3 is just some constant (conditional on X;), we get that Y;|{X;, Z;} follows a
normal distribution. We can work out that

ElYi] = E[Xif + Zibi + €]
=X,0+ Z;Eb]+ Ele] = Xi8+0+0= X8
var(Y;) = var (X;0 + Z;b; + €;)
= var(Z;b;) + var(e;) Independence has been used here
= Z;var(b;)Z! + G,
= Z,DZ! + Gi.

As a result, we find that we have actually specified a particular marginal model! That
is, by specifically modelling the fixed effects, random effects, and random errors we are
presented with a marginal model that takes on a specific form. Because of the parametric
specification, we can proceed with maximum likelihood estimation for the parameter values.
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Doing so will present all of the usual asymptotic theory, allowing us to use both Wald-based
procedures and likelihood ratio tests as we have become accustomed to doing. We will need
to take specific care when conducting inference related to the variance!

Variance Interpretation and Considerations

We saw that the variance of Y; is given by Z;DZ!+ G;. We can view this as a breakdown into
the two sources of variation, where the variation between subjects is captured by D and the
variation within subjects is captured by G;. We allow the variation between subjects to be
mediated by Z;. As a result, using the mixed effects models provides not only the ability to
interpret the sources of variation, but also accounts for complex between-subject variation
through its specification directly.

We will generally take G; = 02, and so we can denote the variance of Y; as V;() =
Z;DZ! + 0?1, where 0 is taken to be a vector of parameters containing the (unique) entries
of D as well as 0. Because estimation proceeds via ML (or REML), the estimator 0 will be
approximately normal and so in theory we can use this for inference regarding 6. However,
0 corresponds to variance parameters, and we know that variance matrices must be positive
definite. As a result, the parameter space for 6 is heavily constrained (think of the estimate
for o2, which must be > 0). Constrained spaces end up making Wald and LR statistics
behave poorly in their limits, and so we need to be careful about how inference proceeds.
Suppose we take the (random slope and intercept model), specified by

Yij = Bo + Bitij + boi + b1itij + €,

which gives that
0 = [Var(bo’i)7 VaI‘(bLZ‘), COV(b()’Z', bl,i)) 0'2],
Now, in this case we know that 6;, 6, and 6, are all constrained away from 0, whereas 63
does not have constraints on its space. As a result, if we wish to test Hy : 03 = 0, we can
proceed as we would expect, using
-
= N N(0,1),

~

var(6s)

and applying our standard results. However, if we wish to test Hy : §3 = 0 (which would
correspond to whether or not there is a significant amount of variation between subjects in
terms of their rate of growth, a hypothesis that is likely of interest!!) we would find that

02

var(6s)

% N(0,1).

Since this null distribution is far from accurate, we have to find other mechanisms for
testing these hypotheses (as, once again, they are of interest!). We can consider the fact that
the hypothesis Hy : 82 = 0 can be re-framed in terms of nested models. If we contrast the
model above with

Yij = Bo + Bitij + bo + €55,

Page 3 out of 6



STAT 437 - Lectures 019 and 020 Notes Mixed Effects Models (Theory)

we will find that setting 6 = 0 results in this model (since if #; = 0 then var(b; ;) = 0 which
means that by, = 0 for all 7). If we were to fit both of these models, then they are nested
within one another, and we can conceivably use a LRT to test the significance of the effect.
We can define R R

A=—2 (zl(eﬂ)) - £2(9<2>)> ,

as we did before. If the parameter spaces were not constrained then we would expected,
under the null hypothesis that the parameters in 8 can be set to zero, this statistic would
follow a x? distribution where r is the number of constraints put on the model. In this case,
however, we will find that the null distribution actually follows a mixture of two chi-square
random variables, where the number of degrees of freedom corresponds to the number of
random effects in each of the two models. That is

A 0.5x2 +0.5x2,

where ¢ is the number of random effects in model (1) and ¢ is the number of random effects
in (the larger) model (2). Making this change allows us to proceed as we otherwise would
with a likelihood ratio test.

Returning to the previously specified example, we can make this concrete. Say that we
fit Model 1 as Y;; = By + Pitij + bo; + €5, such that ¢ = 1. We fit Model 2 as Y;; =
Bo+ Pitij+bo; + by itij+€;; such that ¢’ = 2. Then, we can compute the maximum likelihood
estimates of AV and 92 respectively. The hypothesis of interest in Hy : 952) = 0, which can
be tested using

A= =2(0,(0W) = £,(6)) L 0.5y% + 0.5x2.

Random Intercept and Random Slope/Intercept Models

Two commonly used special cases of mixed effects models are the random intercept model,
and the random intercept and slope model. In the random intercept model the only random
effect is taken to be by ;, allow for the intercepts to differ based on individuals in the sample.
That is we take

Y;j = X;]ﬁ + bO,i + €ij-

Consider what this model implies about the correlation between Y;; and Y.

}/;71/;

cor(Y;j,Yi) = cov (¥, Ya)
(V) var (Vo)

cov(bo,i, bo,i) T

V(02 +02) (02 + 02) ot + 0%

As a result, for any arbitrary (j,¢) we find that there is constant correlation. Recall that,
taken together with the fact that Y; is normally distributed, this amounts to making the
exchangeable correlation assumption! Here we have seen this as a way of justifying the
exchangeable assumption, where we explicitly model the source of variation as different
baseline values!
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In the random intercept and slope model, we take

Yij = Xi;8 + boi + biitij + €ij.
This way we allow both the rate of change and the baseline value to differ between individuals.
Consider that in this case we would find

do1 dn

var(b;)) = D = {doo dm} ,

where dj; = cov(b;;, bs;). Note that if dp; > 0 then we are saying that the individuals who
have higher values at the start also grow more quickly (and low values more slowly), where
as dp; < 0 would suggest the opposite. Now, if we consider writing down the covariance of
Y;; and Yj,, we get

COV(Y;ﬁ Y;Z) = Zi(TOW j)DZl{(row £) + 02[(j7€)
_ 1 1doo don| |1 N2
=[1 t] [dm dﬂ] [tig] +1(j =100
= doo + dortij(doy + dirtij)tie + I(j = £)o?
= doo + do1 (tij + tie) + diatijtie + I(j = 0)o”.

As a result, we find that both the variance (j = ¢) and covariance (j # ) terms in this
model are able to vary over time! This makes them incredibly flexible at accommodating
structures that we tend to observe in actual data.

Prediction of Individual Effects

Thus far we have only talked about the use of parameter estimates corresponding to the
fixed effects. When we wish to consider the individual effects, we need to consider this a
prediction problem. The reason is that, since b; are taken to be random, these do not take on
fixed values. Instead of estimating the quantities, we can predict them, on the basis of our
model specification. The best predictor (in terms of minimizing the MSE) of any quantity
is given by the conditional mean of that quantity, and so we can try to solve E[b;|Y;]. We
can work this out, under our assumed model, to be given by

Eb|Y,) = DZV, 7 (Y; — X,5),

If we plug-in our estimated quantities for D, V;, and 8, then we have a predictor of b; which
we call the best linear unbiased predictor or BLUP. You may also hear the BLUP referred
to as an empirical Bayes estimator or the empirical BLUP. The BLUPs can be used to
predict individual-level effects in the model, to differentiate how specific individuals respond
compared to others. R R R
Once we have the BLUP, we can also predict the individual response as Y; = X5+ Z;b;.
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Making a few substitutions gives us

2‘ = Xig—f— Zi/l;z‘
= Xig—i‘ ZiﬁZz{‘A/i_l(Y; — ng)
= (I - ZDZV )X+ Z,DZV, Y,
— GV X5+ (I - GV Y,

From this we can view our predicted value for Y; as a weighted average between the population
mean, X;( and the individual’s observation Y;. As the within subject variation grows (G;),
our estimate becomes more heavily weighted towards the population mean. As there is more
between-subject variation (Z;DZ! = I — G;V;~') we give more weight to the individual level
data (Y;) as compared to the population mean.

Framing as Hierarchical Models

The nature of the model specification lends itself to an alternative interpretation, one which
is quite commonly used in some parts of the literature. The idea is that we can also think of
random effects models as hierarchical models, where we specify different levels of conditional
modelling! If we condition our outcome on b;, we can see that E[Y;|b;] = X8 + Z;b;,
since Ele;] = 0. Moreover, var(Y;|b;) = var(e;) = G;. As a result, we can specify the model
Yi|b; ~ N(X;8+Z;b;, G;). Then, we have been specifying b; ~ N (0, D) for each i, marginally,
and as a result this two-stage formulation specifies the same model as we did above.

Well the benefits of doing this are limited in the linear case, it can be a natural way to
think about the models. By conditioning on the individual effects, we only need to specify
the mean behaviour of each individual; then, assigning these effects to be random according
to some distribution allows for us to fit the model parametrically. This idea becomes more
powerful when it is extended to even further layers (not done in this course) or when the
distribution of Yj; is not continuous, allowing for a more clear separation.
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